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ABSTRACT: Based on Kalman filtering, multi-sensor navigation systems, such as the integrated 

GPS/INS system, are widely accepted to enhance the navigation solution for various applications. 

However, such integrated systems do not always provide robust and stable navigation solutions due  

to unmodelled measurements and system dynamic errors, such as faults that degrade the performance 

of Kalman filtering for such integration. Single fault detection methods based on least squares 

(snapshot) method were investigated extensively in the literature and found effective to detect the 

fault at either sensor level or integration level. However, the system might be contaminated by 

multiple faults simultaneously. Thus, there is an increased likelyhood that some of the faults may not 

be detected and identified correctly. This will degrade the accuracy of positioning. In this paper 

multiple fault test and reliability measures based on a snapshot method were implemented in both the 

measurement model and the predicted states model for use in a GPS/INS integration system.   

The influences of the correlation coefficients between fault test statistics on the performances of the 

faults test and reliability measures were also investigated. The results indicate that the multiple fault 

test and reliability measures can perform more effectively in the measurement model than  

the predicted states model due to weak geometric strength within the predicted states model. 

 

1. INTRODUCTION 

 

Today integrated navigation systems have been widely employed to provide robust and 

reliable navigation solutions for various platforms such as land-based vehicles or unmanned 

aerial vehicles (UAVs). The Kalman filtering has been commonly used as a data fusion tool 

for the integration of GPS/INS in real- time kinematic applications. In all GPS/INS 

application scenarios, quality control technique should be implemented in either system 

level or integration level in order to minimize the unpredicted failures (outliers/faults) 

which are considered as biases in functional models. Faults can be considered as the 

measurements that deviate considerably from the normal distribution for the majority of the 

measurements within the systems. The appearance of the faults in the systems may degrade 

the navigation solution at any stage of navigation. Therefore, quality control technique 

including integrity and the reliability of the navigation solutions is employed to provide  

an alert to the user when the system is no longer available for reliable navigation. The 

reliability deals with minimizing the failures whereas the integrity is to detect if the fault 

has occurred and then isolate/remove it in order to achieve high reliability of the system. 
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With high degree of the integrity, the reliability of the system will increase (Sukkarieh, 

2000). 

 

In order to check the influence of the faults on the observations, the reliability theory was 

introduced by Baarda (1968) and applied to the geodetic survey to evaluate the ability of  

a system to control measurements. The reliability theory includes internal reliability, such 

as Minimal Detectable Bias (MDB) which is also known as Marginally Detectable Error 

(MDE), controllability and reliability numbers to evaluate the ability of the model to detect 

the faults. The reliability number is used to remove the effect of non-centrality parameter. 

The internal reliability of the system is influnced by some factors such as the correlated and 

non-correlated observations, the number of visible satellites, geometric constrains, multi-

sensor integration system and the structure of dynamic model.  

 

Förstner (1983) extended the reliability theory through evaluating the alternative 

hypothesis.  Furthermore, the theory has been assessed in the cases of correlated and 

uncorrelated observations. With correlated observations, Wang and Chen (1994) proposed  

a new reliability measures for single fault and found that the range of the redundancy 

number may exceed one or become negative, when the observations are correlated. 

Similarly, Proszynski (2010) introduced another approach to reliability measures with 

correlated observations. In multi-sensor integration systems, Hewitson and Wang (2010) 

implemented the reliability theory under single fault scenario in GNSS/INS integration 

system.  Recently, Knight et al (2010) extended the reliability theory by generalizing a new 

mathematical computation of internal and external reliability under the presence of multiple 

faults. 

 

In this paper, multiple fault test and reliability measures in terms of Minimal Detectable 

Bias (MDB) and reliability number have been implemented for tight GPS/INS integration 

systems.  Fault detection tests and reliability measures have been applied under  

the scenarios of single and multiple faults in measurement and predicted state models. In 

order to evaluate the performances of the fault detection test, the correlation coefficients 

between the fault detection tests statistics have been analysed for measurements and 

predicted states models.  

 

The structure of the paper is as follows: Section 2, describes the mathematical model of 

multiple faults and reliability measures in GPS/INS systems. Section 3, provides the test 

and the results followed by the concluding remarks in section 4.  

 

2. MULTIPLE FAULTS IN GPS/INS SYSTEMS 

Kalman filtering is normally employed for tight GPS/INS integration and the discrete time 

of the system state and measurement model of the Kalman filtering can be written  

as follows: 

 

                          111 −−− +Φ= kkkk wxx     (1) 

                                   kkkk vxHz +=     (2) 
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where kx  is the )1( ×n state vector; kΦ  is the )( nn × transition matrix; kz  is the )1( ×r

observation vector; kH  is the )( nr × observation matrix. The variables kw and kv
 
are 

uncorrelated white noise errors with covariance matrices kQ and kR respectively. 

                                                                             
 

It has been found that through integrating the predicted states kx  and the measurement 

model kz  of Kalman filtering in one vector using least squares principles, optimal estimate 

of the state parameters can be obtained. The corresponding measurement model can be 

expressed as (Wang et al, 2008): 

 

                                   kkkk vxAl +=     (3) 
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where E is the kk mm ×  identity matrix  

The corresponding variance- covariance matrix, which is derived from the measurement 

noise covariance matrix R and the predicted states covariance matrix P(-) of Kalman 

filtering, can be written as (Wang et al, 2008) : 
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The optimal estimate of the state parameters kx̂
 
and the error covariance matrix kxQ   are:  
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The KF residuals kv
 
and cofactor kvQ  can then be calculated from: 

 

 kkk
kx

zk
k lxA

v

v
v −=








=   (8) 

T
kkxklvk AQACQ

k
−=   (9) 

 

The Kalman filtering as least squares (snapshot) can be used for fault detection test in 

integrated GPS/INS systems.  

 

2.1. Faults detection test 

After employing the global model test to test whether the model includes faults or not, the 

fault detection test can be used in order to identify the corresponding measurements as  
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a fault. Regardless the true number of faults that exist in the observations, the fault 

detection test can be written as follows (Wang and Chen, 1999; Knight et al, 2010): 

 

2
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Where G is an n by θ matrix, with rank θ containing zeros with a one in each column 

corresponding to the fault, 
2
0σ is the priori variance . When 

2
w exceeds the predefined 

critical value, the null hypothesis will be rejected because one or more faults exist in the 

observations. Since the alternative hypothesis is accepted, the fault detection test statistics 

will have a non-central Chi-square distribution and then the non-centrality parameter can be 

written as (Baarda, 1968; Wang and Chen, 1999): 
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where z is the true fault vector, if the fault identification is possible, the largest 
2

w test is 

corresponding to the true fault vector.  Faults identification based on (10) can be applied for 

different number of faults such as one, two or three faults. The procedure is to apply (10) 

for single fault and remove the fault if it exists, then to two faults, three and so on.  

 

2.2. Internal reliability measures 

With given a certain probabilities of Type I error α and Type II errors β, the internal 

reliability of the system which includes the Minimal Detectable Bias (MDB) iS0∇  and the 

reliability numbers ir can be calculated in order to evaluate the system ability for detecting 

faults in the model. MDB for single fault can be determined as (Baarda, 1968; Salzmann, 

1993; Gikas et al, 1999; Knight et al 2010): 
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where ih is )1( n× vector containing zeros and one elsewhere corresponding to the single 

fault. For multiple faults (θ=2 or more) however, the MDB can be computed through 

determining the multiple correlation coefficients. In the case of two faults,  the multiple 

correlation is equivalent to the correlation coefficients between two single fault tests 

statstics. The multiple correlation coefficients 
θ
ijP  and MDB for multiple faults

θ
iS0∇ can 

then be written respectively as (Knight et al., 2010): 
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in order to evaluate the impact of the system geometry, reliability number can be used.  

Reliability number can be calculated in the cases of single and multiple faults respectively 

as (Wang & Chen 1994; Knight et al 2010): 
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It has been proved that when observations are not correlated the reliability number  is equal 

to the redundancy number ir  (Wang & Chen 1994): 

              iilv
T
ii rhCQhr == −1

    (17) 

With bounds of                               10 ≤≤ ir                                                         (18)                      

 

In the case of correlated observations however, the bounds of ir for single and multiple 

faults can be written respectively as:                                                             
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3. TEST AND RESULTS  

 

Tight GPS/INS integration experiments have been carried out using the real data set 

calculated by two dual frequency Leica 530 GPS receivers and one BEI C-MIGITSII 

(DQI-NP) INS unit. One of the GPS receivers was static and another one along with DQI-

NP was set on the top of a land–based vehicle.  Figure 1 shows vehicle trajectory of the 

moving receiver. GPS receivers tracked 8 satellites at the first 20 epochs and then the 

number of satellites fluctuated around 6 until they ended up with 7 satellites. 

 

Pesudo-range observations for tight GPS/INS integration were used to update 15 error 

states: 9 states of navigation solution (3 for the position errors, 3 for the velocity errors and 

3 for the attitude errors), 3 states for the INS acceleration biases , and the last 3 for the gyro 

biases. 
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In order to evaluate the performance of the fault detection test statistics in integrated 

GPS/INS systems, faults were injected (simulated) in measurement and predicted states 

models at different locations.  The fault detection test as well as reliability measures were 

applied to detect and identify single and multiple faults, as well as to measure the fault 

detection ability, in measurement and predicted states models.  

 

3.1. Fault tests and internal reliability in measurement model 

Fault detection test statistics and internal reliability measures for single fault scenario in 

measurements model at epoch 10 are shown in Table 1. When 12m fault was added to 

satellite 18, the fault test identifies that satellite  as a faulty satellite because  the value of 

the fault detection test exceeds the critical value (CV) which is 10.83 with alpha (α) and 

beta (β) equal to 0.1% and 80% respectively. The Minimal Detectable Bias (MDB) for the 

faulty satellite is less than simulated fault value, indicating the ability of the test to identify 

the fault. When satellite 18 was removed, the values of of fault detection test statistic 

increased slightly but it was less than the critical value.  

 

 
 

Fig. 1. Vehicle trajectory 

 

In order to show the behaviour of MDB and reliability number with time, Figure 2 shows 

the averaged MDB and reliability number, as well as the number of visible satellites over 

the time. It is obvious that opposite relationships can be seen when comparing these three 

graphs in Figure 2.  When the number of visible satellites increases, the reliability number 

increases as well. Normally, when the number of visible satellites increases, the MDB 

decreases and vice versa. 

 

Regarding the two faults scenario, Table 2 shows the faults of 12m at measurements 5 and 

6. The critical value is 13.82 (with the alpha being equal to 0.1%). In a normal situation, the 

value of the fault detection test statistics for all the measurement pairs related to 

measurements 5 or 6 should exceed the critical value. It is obvious that, the value of the 

fault test statistic for both (5,6) measurements is the highest value that exceeds the critical 

value. However, other values for the measurement pairs such as (1,3), (1,4) and (3,4) 

measurements failed the test too, because they are higher than the critical value. The most 

likely reason is related to the correlation coefficients between the fault test statistics. More 
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analysis about correlation coefficients between fault test statistics will be highlighted later 

in this paper.  

 

The internal reliability for the multiple fault test scenario is shown in Table 3. Due to the 

limited space herein, only MDB and reliability number for 5 and 6 measurements are 

shown. It can clearly be seen that the MDB is smaller than the simulated fault values. 

Therefore, the fault test for identifying measurements 5 and 6 as faulty measurements is 

efficient.  
 

Tab. 1. Single fault test statistics and internal reliability at epoch 10 in GPS/INS integration (α=0.1%, 

β=80%, CV=10.83) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Fig. 2. The averaged MDB/reliability number for single fault test and the number of visible satellites 

over the time for measurement model 

 

3.2. Fault tests and internal reliability in predicted states model 

In this section, a fault of 15m were injected in predicted states in order to be tested using 

both single and multiple fault detection tests. All conditions in terms of critical value, alpha, 

and beta are simlar to those used in the measurement model. In Table 4, the fault detection 

test identified a single fault in Y position because its value exceeds the critical value. 

Furthermore, Y velocity and X attitude are also identified as faults due to the high 
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measurement 5 (SV 18) 
SV 18 Removed 

SV Wi2 
MDBi 

(m) ri  Wi2 
MDBi

(m) ri  

3 0.057 4.758 1.696 1.231 4.794 1.671 

6 0.093 6.050 1.049 0.582 6.071 1.040 

14 2.057 5.252 1.392 2.109 5.168 1.442 

15 2.925 5.363 1.335 0.521 5.362 1.343 

18 46.43 5.290 1.372    

21 0.059 5.993 1.069 4.794 5.19 1.431 

22 0.765 5.597 1.226 0.362 5.646 1.201 

26 0.001 4.651 1.775 0.015 4.622 1.801 
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correlation coefficients between them and the observation that includes the true fault. The 

performance of single fault detection test is efficient because the MDB value is smaller that 

the simulated fault value. 

 

Figure 3 shows the average of MDB, reliability number for predicted states and the number 

of visible satellites over the time. It is obvious that the opposite relationships can be seen 

when comparing the three graphs in Figure 3.  When the number of visible satellites 

increases, the reliability number increases as well. And at the same time, however, the 

opposite relationship between the MDB and the number of visible satellites can be seen. 
 

Tab. 2. Multiple fault test statistics at epoch 10 in GPS/INS integration (α=0.1%, β=80%, CV=13.82) 

 

Two faults of 12m in measurements 5 and 6 (SV 18 &21) 

i j Wi2 i j Wi2 i j Wi2 

1 2 13.318 2 5 25.926 4 5 48.812 

1 3 35.549 2 6 35.977 4 6 46.813 

1 4 24.139 2 7 2.411 4 7 13.242 

1 5 42.146 2 8 3.079 4 8 13.067 

1 6 54.926 3 4 21.58 5 6 59.375 

1 7 16.131 3 5 47.423 5 7 25.682 

1 8 16.039 3 6 46.424 5 8 26.385 

2 3 15.708 3 7 15.275 6 7 35.328 

2 4 13.518 3 8 15.519 6 8 38.236 

      7 8 3.331 

 

Tab. 3. Internal reliability for two faults in the measurement model at epoch 10 (α=0.1%, β=80%, 

CV=13.82, θ=2)  

 

i j 
MDBi 

(m) 
ri  i j 

MDBi 

(m) 
ri  

5 1 5.304 1.372 6 1 6.035 1.059 

5 2 5.309 1.360 6 2 5.998 1.151 

5 3 5.372 1.352 6 3 6.006 1.048 

5 4 5.479 1.348 6 4 5.993 1.089 

5 6 5.291 1.375 6 5 5.994 1.069 

5 7 5.314 1.355 6 7 6.020 1.068 

5 8 5.293 1.376 6 8 6.021 1.067 
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Table 5 shows multiple fault test for two faults in predicted states 2 and 7 (observation 10 

and 15 respectively) and also internal reliability of observation 10 only.  When the faults 

were added in observations 10 and 15, the fault detection test identified those observations 

as faulty. Similar to the measurement model case, the value of the fault detection test 

statistics for all the observations that related to the 10 or 15 should exceed the crtical value. 

It is obvious that, the value of the fault test statistic for both (10,15) is the highest value 

among all the observations. It can also be seen that observations (10,13) and (13,15) have 

very high values. This is due to the correlation coefficients between the fault detection test 

statistics. One can see that the MDB values increase, while the reliability number values 

decrease.  

 

3.3. Correlation coefficients analysis 

The correlation coefficients between two fault detection test statistics wi and wj are an 

efficient indicator of the performance of the fault test statistics. When the correlation 

coefficients between the tests statistics are high, the identification of the faults becomes 

difficult and hence several observations may be flagged as faulty observations wrongly. 

Since Kalman filter as least squares is used in integrated GPS/INS system,  

the characteristics of the observation vector components are varied due to the heterogeneity 

of the observations, which then leads to complex correlation coefficients between the tests 

statistics and consequently, more difficulties in identifying the correct faults, especially in 

the predicted states model. 
 

Tab. 4 Single fault test statistics and internal reliability at epoch 10 in GPS/INS integration (α=0.1%, 

β=80%, CV=10.83) 

 

Fault of 15m in observation 10 (predicted state 2) 

State Obs Wi2 MDBi  ri  

P
o

si
ti

o
n
 9 2.632 4.651 10.174 

10 20.185 7.719 6.215 

11 3.803 7.580 6.691 

v
el

o
ci

ty
 12 0.733 9.329 4.237 

13 14.072 10.042 3.314 

14 0.413 9.950 4.161 

A
tt

it
u

d
e 15 12.778 10.884 2.854 

16 0.008 0.988 12.861 

17 0.0172 0.988 12.861 

A
cc

el
er

at
i

o
n

 b
ia

s 18 0.417 1.753 13.017 

19 0.052 1.298 13.217 

20 0.041 1.298 13.217 

G
y

ro
 b

ia
s 21 0.001 1.279 13.420 

22 0.02 1.002 14.221 

23 0.101 1.002 14.221 
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Fig. 3. The averaged MDB/reliability number for single fault test and the number of visible satellites 

over the time for predicted states in GPS/INS integration 

 

Tab. 5 Multiple fault test statistics and internal reliability for predicted states 2 and 7 (observation 10 

and 15 respectively) at epoch 10 in GPS/INS integration (α=0.1%, β=80%, CV=13.82) 

 

Two faults of 15 m in predicted states 2 and 7 (observations 10 

and 15) 

i j Wi2 MDBi  ri  i j Wi2 

9 10 31.139 0.982 10.701 9 15 35.096 

11 10 31.139 0.981 11.283 10 15 70.752 

12 10 31.139 0.986 13.423 11 15 35.128 

13 10 59.124 11.917 1.771 12 15 35.085 

14 10 31.139 0.981 11.283 13 15 61.704 

15 10 70.752 8.107 1.908 14 15 35.095 

16 10 31.139 0.993 10.628 16 15 35.077 

17 10 31.14 1.309 10.201 17 15 35.077 

18 10 31.431 1.649 9.906 18 15 35.077 

19 10 31.169 0.965 10.718 19 15 35.077 

20 10 31.139 0.974 9.651 20 15 35.873 

21 10 31.139 0.990 10.001 21 15 35.077 

22 10 31.139 0.985 11.719 22 15 35.077 

23 10 31.139 0.983 10.991 23 15 35.077 

 

Figure 4 shows the correlation coefficients between the fault detection test statistics for the 

measurement model, the predicted state model and measurement with predicted states. One 

can see that the correlation coefficients matrix is symmetric with diagonal ones showing 

that each measurement is fully correlated with itself.  For the measurement model only, the 

degree of correlation coefficients is small and the highest degree comes between (4,5) then 

(3,5) and (3,4). Therefore; if the fault occurs in measurement 5, measurements 3 and 4 may 

be potentially identified as faulty. This is true based on multiple fault test statistics shown 
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in Table 2.  The worst case can be found in the predicted states model only because they 

have the highest correlation coefficients. The reason could be related to the functional 

relationship between the system sates model. For instance, the degree of correlation 

between velocity and position, acceleration bias and gyro bias is very high due to functional 

relationship (dependency) between them. If the fault occurs in velocity the position will be 

contaminated as well. Another important point is that the range between the maximum and 

the minimum values of the correlation coefficients  is very high.  This is due to the 

heterogeneous characteristics of the predicted states. 

 

 
 

Fig. 4. The correlation coefficients between fault test statistics for the mesaurement model (top), the 

predicted state model (middel) and mesaurements/predicted state models (bottom) at epoch 10 in 

GPS/INS integration 
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Between the measurement and predicted states models, the degree of correlation is close to 

zero. This confirms that there is no strong geometric relationship between the measurement 

model and the predicted states model and hence if the fault occurs in the measurement 

model, it may not affect the predicted states model and vice versa. 
 

4. CONCLUDING REMARKS 

Multiple fault detection tests and reliability measures in terms of Minimal Detectable Bias 

(MDB) and reliability number have been investigated in tight GPS/INS integration systems. 

The paper has analysed the sensitivity of the fault detection test and reliability measures 

under the presence of single and two faults in both the measurement and predicted state 

models.  

 

It has been shown that the fault detection tests can perform effectively in identifying single 

and multiple faults in both the measurement and predicted state models. and the reliability 

measures (e.g., MDBs) provides realistic evaluation of the ability of the model to identify 

the faults. However, there are some factors that influence the performance of fault detection 

tests and reliability measures such as the number of visible satellites, the strength  

of geometry and the correlation coefficients between the tests statistics.   

 

As the correlation coefficients is higher for the predicted state model than those for the 

measurement model, several predicted states may be flagged as faulty observations 

wrongly. Therefore, more analysis about the influence of the correlation coefficients 

between fault tests statistics under different dynamic model structures, on the performance 

of the fault detection test requires further investigation in the future.  
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